蚌埠市起重电机有限公司

热门关键词: 起重电机

AVR单片机实现对步进电机的细分控制及其应用

  ●指针转动平稳,即指针从当前位置到目标位置之间的走位要平稳,正、反转都不能出现抖动;

  根据技术参数可知,采用两相四拍和两相八拍时的步距角为10o和5o,在300o的范围内只能作30和60个刻度划分,在实际应用中,会发现指针步距角不能满足要求而且抖动不可避免。为了实现指针高精度的准确走位和平稳运转,要对步进电机步距进行高分辨率细分,这也是设计的难点所在。

  步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机某相线圈加一脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变得非常简单。虽然步进电机已被广泛地应用,但步进电机并不像普通的直流电机、交流电机那样在常规下使用。它必须在双环形脉冲信号、功率驱动电路等组成控制系统下使用。

  仪表步进电机属于步进电机中体积、功耗较小的类别,可以由单片机或专用芯片的引脚直接驱动,不需外接驱动器,因而在仪表中被用于指针的旋转控制。

  步进电机的细分技术是一种电子阻尼技术,其主要目的是提高电机的运转精度,实现步进电机步距角的高精度细分。其基本概念为:步进电机通过细分驱动器的驱动,其步距角变小了。如驱动器工作在10细分状态时,其步距角只为电机固有步距角的十分之一。以两相四拍为例:当电机工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动10o;而用细分驱动器工作在10细分状态时,电机只转动了1o。细分功能完全是由驱动器或单片机靠精确控制电机的相电流所实现的,与电机本身无关。

  从以上的分析可知,两相四拍是整步运转不细分,两相八拍其实是2细分。合成的磁场和电流矢量夹角以90o和45o的方式变化,如此往复循环。

  参考相关资料后不难发现:细分驱动技术常用近似正弦波的阶梯型电流代替矩形波电流,产生一个微步旋转磁场,从而带动电机以更小的步距角转动,其电流波形和旋转磁场矢量如图1所示。同时由于正弦波电流变化平滑,使电机运行更平稳、噪声更小。即通过改变相邻两相(A,B)电流的大小和方向(A相正弦波和B相余弦波矢量叠加),以改变合成磁场的夹角,通过电流矢量合成的方式来控制步进电机运转。

  根据细分原理可知,对于两相步进电机,需要同时控制两组线圈的电压大小和方向才能达到合成电流矢量控制的目的,控制线圈的电流大小有两种方案:其一是通过单片机写入数字量,由数模转换器件输出模拟电压,控制线圈电流大小;其二是通过某些单片机自带的PWM引脚输出占空比可控的方波,用其交流有效值控制线圈电流大小。很显然,按照正弦规律变化的占空比决定了线圈电流大小也按照相同的正弦规律变化。线圈的电压施加方向可以通过逻辑门电路来实现。

  综上,选用具有两路16位精度PWM功能的ATMEGA48单片机,外围硬件电路设计如图2。

  使用该单片机具有PWM功能的PB1和PB2连接PWM_A和PWM_B,使用两个普通引脚连接DIR_A和DIR_B即可实现对电机的控制。原理说明如下:电机的A、/A、B、/B分别对应四输入与门电路的3、6、8、11引脚。在DIR_A和DIR_B为低电平时,门电路的1、9引脚为0状态,三极管Q3、Q4截止,门电路的4、12引脚由于上拉处于1状态,这样,与门电路的3、8输出为0,即A、B为0;此时与门电路的6、11输出与PWM_A和PWM_B保持一致,即/A、/B由PWM_A和PWM_B决定。在其他状态下,也具有同类特点:A和/A之间、B和/B之间的通电极性由DIR_A和DIR_B决定;A和/A之间、B和/B之间的电流大小由PWM_A和PWM_B的占空比决定。而且只要三极管Q3、Q4工作正常,与门电路就不会出现逻辑混乱的情况。

  配合硬件的设计,软件上编写了一个由64个数据组成的数组,分别对应了0~90o正弦波幅度变化的8位数字量化值(以阶梯波的方式模拟了64点正弦波抽样),每个值用来控制输出波形占空比,实际上参与了电流矢量夹角转动90o过程中其电流大小的计算。众所周知,正弦、余弦波相位相差90o,在已知0~90o正弦波幅度变化表后,同样可以得出90o~180o、180o~270o、270o~360o(0o)的正弦波、余弦波幅度变化表,所以通过0~90o正弦波幅度变化的8位数字量化表的演化,就可以在两相八拍(二细分)的基础上把电流矢量夹角分成四个象限,配合极性的控制,在每个象限中把A或/A的正弦波和B或/B的余弦波作8种组合,在每种组合中完成电流大小的变化,最终作到两相64拍(16细分)的控制。而且,最巧妙的一点就在于:通过选择64个数据对应每90o范围的正弦波的64个点,电机和带轮就可以用一个字节的大小来作为区分4个象限的标志,便于对正、余弦的角度进行演化,即0~63对应0~90o,64~127对应90o~180o,128~191对应180o~270o,192~255对应270o~360o。

  由于仪表指针从当前角指向目标角时,变化量会有不同。为保证指针响应灵敏、无抖动,必须在正、反转时考虑加、减速控制。程序中,可以根据变化量的大小和正负设定几个控制区间,分别写入不同的延时参数,根据此延时参数来控制电流大小、电机和带轮方向(改变PWM_A和PWM_B、DIR_A和DIR_B)变化时间,就达到了加、减速的控制的目的。

  通过双PWM方式控制两相步进电机,既达到了高精度细分的目的,又在硬件成本上得到了优化。在现有电路的后级增加功率驱动电路并作程序的少量修改,就可以做成高精度、多细分步进电机驱动器。

  本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

  目前,随着信息产业的迅猛发展,各类船舶亟需配备更多质优价廉的中小型信息监控终端,用于监控气象状况、获取导航信息以便保证航行安全。以ARM、MIPS等领衔的32位处理器在信息监控终端应用中,显示出极大优势,但是一般以32位处理器构建的嵌入式系统往往需要配置外部FLASH和SDRAM,这样就使得开发和维护整个系统的成本较高,本设计采用高性能低功耗的AVR单片机和LCD液晶模块来设计信息监控终端,具有价格低廉、性能稳定、显示清晰、人机界面良好等优点,能够满足船舶对中小型信息监控终端的需求。1 总体设计信息监控终端主要由显示控制板、键盘、通信接口和液晶显示模块构成,具有数据收发、数据显示、人机交互和屏幕亮度调整等功能,其组成如图1所示

  在AVR单片机烧写的过程中,难免有弄错熔丝位的时候,结果是AVR单片机无法读写了!这时我们该怎么办呢,将昂贵的芯片丢掉,再用一块新的。其实这一般是没有必要的,写错熔丝位而导致单片机不能读写,一般不外乎(个人愚见)设设置错了时钟模式,比如说本来是用内部晶振的,结果弄成了外部晶振,而单片机的外部有没有接晶振,这时单片机没有了时钟信号,当然就没有办法在读写了,估计大家也猜到了怎么办了吧,是的,就是由外部提供时钟源。有第一张图的时钟选择,我们就知道我们得准备多种时钟源:高频石英/陶瓷晶振,这个直接接在 单片机 晶振位置就可以了,注意频率不要太高,4~5M的就可以了,不放心的线P的电容也行!低频晶振,和上面的插补多,也就

  引言智能化和便携式是现代电子产品的发展趋势,医疗电子的智能化使得医务人员的操作变得更方便。医务人员可随身携带手持式监控仪对各病房点滴实时监控,及时了解相关情况;如遇突发情况如点滴低于设定警戒值,终端监控装置可产生中断信号,主控制端则可优先进行相应的处理。本设计实现了一种以AT32UC3A0512[1]单片机为主控制器的便携式远程无线点滴监控系统,可及时了解点滴状态,提高医疗点滴设备安全性。1 系统原理介绍本系统主要包括两个部分:手持式控制端和终端监控装置。手持式控制端主要实现信息输入和查询界面的操作,通过输入待查询的病房号及点滴速度值,以数据包形式发送给相应的病房监控终端,实时显示终端传送来的点滴状态数据信息。终端

  逆变电源应用广泛,特别是精密仪器对逆变电源性能要求更高。好的逆变电源不仅要求工作稳定、逆变效率高、输出的波形特性好、瞬态响应特性好,还要求逆变电源小型化、智能化、并且具备可扩展性。因此,这里提出一种基于AVR 系列单片机AT90PWM2 的数字正弦逆变电源, 前级SG3525A采用PWM 控制升压电路实现输入和过热保护。后级单片机AT90PWM2 使用单极性倍频SPWM 控制方式进行全桥逆变,且进行输出保护。1 总体设计及工作原理逆变电源的系统整体框图如图1 所示,系统的主电路采用前级推挽升压和后级全桥逆变的2 级结构[2],这样可以避免使用工频变压器,有效降低电源的体积和质量,提高逆变效率。其工作原理为:12 V 的直流输入

  控制。负载电流检测电路用于过流保护及负载功率检测。状态显示电路用于系统状态的显示,包括电压、负载状况及充放电状态的显示。串行口上传数据电路用于系统运行参数的上传,实现远程监控。键盘输入电路用于充电模式设定及LCD背光开启。该控制器在有阳光时接通电池板,向蓄电池充电;当夜晚或阴天阳光不足时,蓄电池放电,以保证负载不停电。1.3 AVR单片机AVR微处理器是Atmel公司的8位嵌入式RISC处理器,具有高性能、高保密性、低功耗等优点。程序存储器和数据存储器可独立访问的哈佛结构,代码执行效率高。系统采用的mega 32处理器包含有32 KB片内可编程FLASH程序存储器;1 KB的E2PROM和2 KBRAM;同时片内集成了看门狗;8路

  与报警系统,滴速系统(包括滴速控制装置,钢珠等执行机构),单片机处理系统,通讯模块,自定义遥控器模块,显示以及报警模块,角度传感模块等部分。液位检测模块主要用于对液位的报警,执行机构在程序的控制下完成滴速控制;通讯模块用于和主机的通讯。图1 硬件结构框图2.1 液滴检测方案滴速检测采用的是红外检测技术,在茂菲氏滴管上方处对输液速度进行测量。滴速检测装置结构图如图2所示。红外发射器发出红外光后,光线穿透茂菲氏滴管后照射到光电三极管上,光电三极管将照射到它上面的光线变成电流信号进行输出。如果此时茂菲氏滴管中没有液滴滴下,光线的衰减就比较小,照射到三极管上的电流就比较大;如果此时茂菲氏滴管中有液滴滴下,由于液滴挡了一下光线,液滴对光线具有吸收

  STM32MP1系列通用型MPU, 集成双 Arm® Cortex®-A7和 Cortex®-M4 内核

  STM32MP1系列通用型MPU, 集成双 Arm® Cortex®-A7和 Cortex®-M4 内核

  站点相关:综合资讯51单片机PIC单片机AVR单片机ARM单片机嵌入式系统汽车电子消费电子数据处理视频教程电子百科其他技术STM32MSP430单片机资源下载单片机习题与教程

本文由蚌埠市起重电机有限公司发布于市场观察,转载请注明出处:AVR单片机实现对步进电机的细分控制及其应用

TAG标签: 电机和带轮
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。